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Abstract. The dimensionality of harmonic modes in nanocrystalline iron is determined by a
nonlinear method, and the result is analysed in terms of the Debye model and a fracton model.
The negative of the exponent of the recoiless fraction,F , is calculated as a function of temperature
from data in the literature. It is found that the temperature variation ofF cannot be reproduced by
the Debye model for two- or three-dimensional lattices, but can be reasonably well fit by a fracton
model. Using the fracton model, it is found that the density of states scales with modal frequency
and has a scaling exponent of 1.22± 0.13. This suggests that the modes have a dimensionality,

d, of 2.22± 0.13. It is concluded that the value ofd may indicate the presence of fractons and a
fractal atomic structure in nanocrystalline iron.

1. Introduction

The geometric language of fractals (Mandelbrot 1988) can be used to describe the
characteristics of certain real-life objects as well as those of some geometric shapes. Fractals are
self-similar or self-affine patterns, formed by quantities that vary exponentially with resolution
or a length scale (Aharony 1996). Non-random fractals, such as the Sierpiński gasket, are self-
similar across all magnifications (Mandelbrot 1988), but do not occur in nature. Instead, natural
objects may contain patterns that are statistically self-similar or self-affine over a limited range
of magnifications (Kjems 1996). Such patterns are called random fractals. Even though the
median scaling range of random fractal patterns is just 1.3 orders of magnitude (Avniret al
1998), they are of interest due to their abundance in natural objects (Bihamet al 1998). The
properties of random fractals are consistent with the distributions of mass observed in silica
aerogels (Courtens and Vacher 1988), smoke–grain aggregates (Forrest and Witten 1979) and
iron–nickel alloys (Liet al 1997).

Fractals have one or more properties of the formproperty∝ linear scalex (Aharony 1996),
wherex is a non-integer, referred to as a scaling exponent. For example, mass (m) scales with
length (L) asm ∝ Ld . For a material whose mass is distributed in a fractal pattern,d lies in
the range 1–3 (Courtens and Vacher 1988), and is called the fractal dimensionality. The value
of d provides a measure of roughness (Mandelbrot 1988) by indicating the extent to which
the mass occupies an embedding Euclidean dimension (d) of one, two or three. Similarly, the
density of states (DOS) of harmonic vibrational modes (ρ(ω)) scales with modal frequency

(ω) asρ(ω) ∝ ωd−1 (Orbach 1989). In materials thought to contain modes that are localized

on fractal atomic structures,d is referred to as the fracton dimensionality and the modes
are called fractons (Alexander and Orbach 1982). The fracton dimensionality represents the
dimensionality of harmonic vibrations in a solid and characterizes the effect of a fractal atomic

structure on the degrees of freedom (DOF) of its oscillators. The value ofd can lie in the range
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1–3 for a material with a fracton DOS (Courtens and Vacher 1988), but must equal 2 or 3 for
two- or three-dimensional Debye lattices respectively (Debye 1912).

It is interesting to determine whether the Mössbauer spectra of compacted ultrafine iron
grains contain evidence of fractons. Forrest and Witten (1979) found that chain-like aggregates
of iron grains, 8 nm in diameter, have a fractal dimensionality of 1.51±0.05. The detection of
behaviour consistent with that of fractons would provide additional evidence for the presence
of fractal structures in iron. M̈ossbauer spectroscopy is a suitable technique for the detection of
fractons. The spectral area depends on the recoiless fraction (f ) of γ -ray transitions between

nuclear levels, which depends on the DOS (Wertheim 1968) and its scaling exponent,d − 1.
Shrivastava (1986) predicted that the Debye–Waller factor will be reduced in fractal materials
compared with well-crystallized solids. Shrivastava and Misra (1988) examined the recoiless
fraction of frozen deoxygenated myoglobin in terms of a fracton DOS, and deduced that it
represented an effective (fracton) dimensionality of 1.40± 0.07.

This study uses a fracton theory to interpret the temperature dependence off in
nanocrystalline iron. In section 2.1, an equation is derived for the fracton density of states
(DOS) which, in section 2.2, is used to develop an expression forf . Section 3 describes how
the resulting fracton model off was used to interpret data obtained from a previous study
(Herr et al 1987) of nanocrystalline iron, a material thought to consist of nanometre-scale
crystallites separated by atomically disordered grain boundaries. Later parts of this paper
contain the results (section 4), discussion (section 5) and concluding remarks (section 6).

2. Theory

2.1. Density of states

The Debye model (Debye 1912) assumes that normal modes of vibration occur in a continuous,
isotropic medium as standing waves. It considers the modal frequency,ω, to lie in the range
0 6 ω 6 ωD, whereωD = kBθD/h̄. Here,ωD is the Debye frequency,kB is Boltzman’s
constant, ¯h is Planck’s constant, andθD is the Debye temperature of the material. In an
isotropic lattice, the total number of modes equals dN , the number of vibrational degrees of
freedom (d) multiplied by the number of oscillators (N ) (Debye 1912). Consider, for example,
a two-dimensional lattice in which the effective spring constant is zero in the direction out
of the plane and identical for two orthogonal directions within the plane. The oscillators
have two vibrational DOF, and the Debye model predicts a total of 2N modes. For a well-
crystallized material, whose oscillators are free to vibrate in three spatial dimensions, the
Debye model predicts 3N modes. Since the normalized Debye DOS (Debye 1912) has the
form ρ(ω) ∝ ωd−1, it varies in proportion toω for Euclidean surfaces andω2 for well-
crystallized material (Courtens and Vacher 1988). For lattices with three vibrational DOF, the
normalized Debye DOS is (Wertheim 1968)

ρ(ω) = 9Nω2

ω3
D

. (1)

Equivalent expressions may be obtained for fractons to describe the total number of modes
and the fracton DOS. For fractons, as well as phonons, the total number of modes equalsN

multiplied by the number of vibrational DOF. Thus, the total number of fracton modes, counted

in terms of fracton dimensionality (Alexander and Orbach 1982), isdN . The fracton DOS
includes a minimum vibrational frequency (ωC) whose value is related to the length of the
longest vibrating segment in the fractal structure. The normalized fracton DOS may therefore
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be derived from the normalized Debye DOS, and expressed as

ρ(ω) =
 0 0< ω < ωC

d
2
Nωd−1

ωdfD−ωdC
ωC 6 ω 6 ωfD.

(2)

In analogy to the Debye model (Debye 1912),ωC = kBθC/h̄ andωfD = kBθfD/h̄. The
parametersθC andθfD are, respectively, the minimum and maximum temperatures at which a
fracton may be excited.

2.2. Calculation of the recoiless fraction in terms of a fracton density of states

In this section, an expression forf is derived for a material with a fractal atomic structure
and fracton DOS. The derivation has essentially the same form as that of Wertheim (1968).
However, equation (2) replaces the Debye DOS in the development of expressions for the mean
square displacement of vibrating atoms,〈r2〉, and then forf .

In a material with a fracton DOS, the modal frequencies lie in the rangeωC–ωfD as shown
by equation (2), and Wertheim’s expression (Wertheim, 1968) for〈r2〉 may be modified to

〈r2〉 = h̄

NM

∫ ωfD

ωC

[
1

2
+

1

exp(h̄ω/kBT )− 1

]
ρ(ω)

ω
dω. (3)

The fracton DOS in equation (2) is substituted in equation (3) to obtain

〈r2〉 = d
2
h̄

M(ωdfD − ωdC)

∫ ωfD

ωC

[
1

2
+

1

exp(h̄ω/kBT )− 1

]
ωd−2 dω. (4)

After integrating the first term under the integral sign, equation (4) becomes

〈r2〉 = d
2
h̄

2(d − 1)M(ωdfD − ωdC)

[
ωd−1
fD − ωd−1

C + 2(d − 1)
∫ ωfD

ωC

ωd−2

exp(h̄ω/kBT )− 1
dω

]
.

(5)

To clarify the integral in equation (5), the expressionsωfD = kBθfD/h̄, ωC = kBθC/h̄ and
u = h̄ω/kBT were substituted in equation (5), and appropriate adjustments were made to the
limits of integration. Thus

〈r2〉 = d
2
h̄2

2(d − 1)MkB(θdfD − θdC)

[
θd−1
fD − θd−1

C + 2(d − 1)T d−1
∫ θfD/T

θC/T

ud−2

eu − 1
du

]
. (6)

The recoiless fraction is given by (Wertheim 1968)

f = exp

(
−
(
Eγ

h̄c

)2 〈r2〉
3

)
(7)

whereEγ , the energy of the emittedγ -ray, equals 3.19× 10−22 J for the 14.4 keV transition
in 57Fe. WhenER = E2

γ /(2Mc
2) and equation (6) are substituted into equation (7), the

expression forf has the form

f = exp

{
− d

2
ER(θ

d−1
fD − θd−1

C )

3(d − 1)kB(θdfD − θdC
)

[
1 +

2(d − 1)T d−1

θd−1
fD − θd−1

C

∫ θfD/T

θC/T

ud−2

eu − 1
du

]}
. (8)
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The negative of the exponent in equation (8),F , is given by

F = d
2
ER(θ

d−1
fD − θd−1

C )

3(d − 1)kB(θdfD − θdC)

[
1 +

2(d − 1)T d−1

θd−1
fD − θd−1

C

∫ θfD/T

θC/T

ud−2

eu − 1
du

]
. (9)

A more familiar expression, the negative of the exponent (FD) in the Debye–Waller factor for
a three-dimensional lattice, may be recovered from equation (9) by replacingθfD by θD, θC
by zero, andd by three:

FD = 3ER
2kBθD

[
1 + 4

(
T

θD

)2 ∫ θD/T

0

u

eu − 1
du

]
. (10)

There are two main differences between the Debye (1912) model and the fracton model
for the DOS. The former has modes with a minimum temperature of zero and requiresd to
equal two and three for two- and three-dimensional lattices respectively; the latter has modes

with a non-zero minimum temperature and only requiresd to lie in the range 1–3.
Equation (9) expresses the relationship betweenF andT for a fracton DOS. In a previous

study (Shrivastava and Misra 1988), it was assumed that the relationship was approximately

F ∝ T d−1 in the temperature region for which the integral in equation (9) is nearly constant.
In such circumstances, the gradient of a double-logarithmic plot ofF as a function ofT equals

d − 1, and was used to calculated (Shrivastava and Misra 1988). However, it is preferable
to use the whole of equation (9) to interpret the temperature dependence ofF : due to the
effect of the logarithmic function, the temperature-independent term in equation (9) may not
be neglected. In this study, the full expression in equation (9) was used to interpretf (T ) in

terms ofd for nanocrystalline iron.

3. Calculations

Numerical results were obtained by applying the theory developed in section 2 to the data
of Herr et al (1987). Herret al (1987) collected M̈ossbauer spectra of a specimen of
nanocrystalline iron, made by compacting 6 nm iron grains produced by inert-gas condensation.
Originally, the data were reported in the form off (T )/f (10), andθD = 345 K. To check
this value ofθD, the Debye formula in equation (10) withθD = 345 K was fitted to the data.
The validity of this low value ofθD is discussed in section 5. To obtainf (T ), each value of
f (T )/f (10) was multiplied by the value off (10), approximately 0.904, obtained by using
θD = 345 K. The value of lnF , whereF = − ln f , was plotted as a function of lnT . The
calculations were repeated usingθD = 467 K to estimate the uncertainty in the final numerical
result.

To simplify the fracton model, values were estimated forθC andθfD in equation (9). The
value ofθC was obtained from the relationship

θC = hυ

2kBx
(11)

whereh is Planck’s constant,x is the mean grain diameter andυ is the wave velocity. It is
assumed that the least energetic fracton modes have a wavelength of 2x, corresponding to the
presence of nodes at the grain boundaries, and thatυ is the same as that of sound waves in
similar, well-crystallized material. The value ofθfD was approximated asθD; it is expected to
be at least as large asθD since fracton modes are excited at higher temperatures than phonon
modes (Courtens and Vacher 1988).
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Figure 1. A plot of the data from Herret al (1987) and curves representing the Debye model for
a lattice of dimensiond. The solid curve represents the fit obtained withθD = 345 K andd = 3.
The broken curves were obtained using the Debye model in conjunction with an additive constant,
with (short dashes)θD = 467 K,d = 2 and (long dashes)θD = 467 K,d = 3.

In the method of Shrivastava and Misra (1988), it was assumed that the gradient of a

double-logarithmic plot ofF as a function ofT was equal tod − 1, in the temperature region
for which the integral in equation (9) is approximately constant. The temperature dependence
of the integral term was examined here usingMathematica (Wolfram 1996). On the basis of
theMathematica findings, the applicable temperature range was determined to be 28–68 K,

andd was calculated from a linear fit to the data in this temperature region.

To evaluated by a nonlinear method,Mathematica (Wolfram 1996) was used to fit
equation (9) to the entire set of data at temperatures aboveθC . The model was also fitted to the
data obtained using the second value off (10), approximately 0.928, which corresponded to

θD = 467 K. The relationship betweend andθC was determined by selecting different values
of θC , then fitting equation (9) to the data. The potential effect of a grain size distribution was

determined from the relationship betweend andθC .

4. Numerical results

As expected, the Debye model does not fit the data. WhenθD is set to 467 K a poor fit is
obtained using either the two- or three-dimensional Debye model (figure 1) whether or not
an additive constant is included. As pointed out by Herret al (1987), the three-dimensional
Debye model only fits the data whenθD is permitted to have an anomalously low value of
345 K (figure 1). The effect on the fit of including a non-zero lower cut-off temperature was
found to be relatively insignificant compared with the value ofd.

In order to apply the fracton models, values were estimated forθC andθfD. In iron grains,
assumingυ = 5960 ms−1 (CRC Handbook of Chemistry and Physics1996–97) and a mean
grain diameter of 6 nm, the maximum fracton wavelength is approximately 12 nm. Thus,
equation (11) yieldsθC = 24 K. The value ofθfD was assumed to be approximately equal to
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Figure 2. Plot of the integral
∫ θfD/T

2
ud−2

eu−1du as a function ofθfD/T for d = 2.2.

Figure 3. Fitted temperature dependence ofF . Dots: data from Herret al (1987). Solid
curve: fracton model with an added constant of 0.41. Dashed line: linear fit between 24–69 K
(3.2 6 ln T 6 4.2). Vertical lines indicate the bounds of the region in which the integral in

equation (9) is approximately equal to 0.18 ford = 2.2, and the lower limit of the fracton regime.

467 K, the value ofθD in well-crystallized iron.

When using the linear method of Shrivastava and Misra (1988) to calculated, it was found

that the value ofd affects the range of temperatures over which the integral in equation (9)

is approximately constant. Ford = 1.3, the integral is found to be approximately constant

for θfD
T
> 5, as assumed previously (Shrivastava and Misra 1988); whend = 2.2 (figure 2)

the integral is approximately constant forθfD
T

> 6. The constant value of the integral is

approximately 0.07 ford = 1.3 and 0.18 ford = 2.2. However, in this study, the value ofd
barely affects the set of data to be fitted. Upon deleting the datum atT = 89 K (lnT = 4.488),
which is inconsistent with the other data (figure 3), the applicable temperature range turns out

to be the same for values ofd in a range of at least 1.3–2.2. Thus, the data set contains the
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Figure 4. Relationship betweend andθC for nanocrystalline iron. The solid curve is a guide to
the eye.

same five data over a reasonably broad range ofd values, and is assumed to be suitable for the

linear method of calculatingd.
Different results were obtained from the linear and nonlinear fits (figure 3). Using the

linear method to fit the fracton model, the result wasd = 1.27± 0.14. When the full fracton
model in equation (9) was fitted to the set of data at temperatures above 24 K, an additive

constant of 0.41 was required. The result wasd = 2.22± 0.13. Using data calculated from
the second value off (10), which had been obtained by assumingθD = 467 K, the result

wasd = 2.37± 0.16. The uncertainties were assumed to be twice as large as the standard
deviations.

It was found that the calculation ofd depends on the value to whichθC is set in equation (9).

For example, values ofθC between 70 K and 10 K correspond to values ofd between 1.4–2.4,
respectively (figure 4).

5. Discussion

The value ofd = 2.22±0.13, obtained from the nonlinear fit, appears to be more reliable than
the result obtained from the linear fit. The nonlinear method involves fitting the full model
given by equation (9), in conjunction with an additive constant of 0.41, to the entire set of
data; two different estimates off (10) led to results that were the same within the experimental
uncertainties. In contrast, the linear method neglects the temperature-independent term in
equation (9) and is applied to a smaller range of data.

Since the value ofd differs from that expected for a three-dimensional Debye lattice, the
result supports the contention of Herret al (1987) that grain boundaries in nanocrystalline
material are probably not Debye solids. The Debye model assumes the presence of a
continuous, isotropic medium, but the structure of nanocrystalline matter is neither continuous
nor isotropic. The small grain size means that 10–50% of the volume fraction consists of
atomically disordered grain boundaries (Schaeferet al 1988), which inhibit the formation of
extended modes.

Nanocrystalline iron is unlikely to be a Debye solid (Herret al 1987) not only because
its structure is incompatible with the Debye model, but because the Debye model leads to
an uncharacteristically low value ofθD. If the Debye model was somehow applicable to
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nanocrystalline iron, the work of Niemantsverdrietet al (1984), who found thatα-FeOOH and
α-Fe2O3 microcrystals have the sameθD as well-crystallized material, suggests thatθD ought
to be the same as in well-crystallized iron. Erroneously low values ofθD can be obtained
for microcrystals in calculations based onf (T ), when the recoiless fraction is reduced by
temperature-dependent grain vibrations as well as normal mode vibrations (Niemantsverdriet
et al1984). In the future, it would be useful to compare a grain-vibration model with the fracton
model. The necessity of including a constant with equation (9) suggests that grain-vibration
effects may occur in addition to fracton behaviour.

A preliminary statistical analysis confirms that the value ofd is significantly different to
that expected from the Debye model for a three-dimensional lattice. In ultrafine (3–200 nm)
iron grains produced by inert-gas condensation, the grain size follows a log-normal distribution;
the geometric standard deviation of the distribution is between 1.36–1.60 (Granqvist and
Buhrman 1976). Thus, approximately 95% of the grains have diameters between 2–15 nm,
which, respectively, correspond to minimum fracton temperatures of 70 K and 10 K. The
results in figure 4 suggest that even if the grains had an average diameter as large as 15 nm,

d would be approximately 2.4, rather than 3. The smaller the grain, the larger the minimum

fracton temperature, and the greater the difference betweend and the value expected for well-
crystallized material (figure 4). This difference is consistent with the presence of a larger
volume fraction of atomically disordered material at the surfaces of small grains or in the grain
boundaries of finely grained material, than in well-crystallized material.

6. Concluding remarks

Since the Debye model does not reproducef (T ) with the use of the correct value ofθD, a
different explanation of the data is warranted. The fracton model is applicable in this context, as
it is able to reproduce the data with physically realistic parameter values and assumptions. The

result ofd = 2.22± 0.13 is consistent with the poorly crystalline structure of nanocrystalline
iron, as it is significantly less than the value of 3 expected for a three-dimensional Debye lattice.
The detection of behaviour consistent with that of fractons provides additional evidence for
the presence of fractal structures in iron. Therefore, this paper has shown that fractal theory
may be suitable for the characterization of atomic structure in agglomerates of ultrafine iron
grains.
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